Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska
نویسندگان
چکیده
Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage.
منابع مشابه
Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils
The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacte...
متن کاملMicrobial community composition and function across an arctic tundra landscape.
Arctic landscapes are characterized by a diversity of ecosystems, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Tundra ecosystems differing in plant composition should contain compositionally and functionally distinct microbial communities that differentially transform dissolved organic matter as it moves downslope from dry, upland to wet, low...
متن کاملSpatial and Temporal Heterogeneity of Vegetation Properties among Four Tundra Plant Communities at Ivotuk, Alaska, U.S.A
Intraseasonal patterns of normalized difference vegetation index (NDVI), leaf area index (LAI), and phytomass were compared for four tundra vegetation types at Ivotuk, Alaska, during summer 1999. The vegetation types included moist acidic tundra (MAT), moist nonacidic tundra (MNT), mossy tussock tundra, and shrub tundra. The seasonal curves of NDVI were similar among the vegetation types but wi...
متن کاملChanges in composition and abundance of functional groups of arctic fungi in response to long-term summer warming
We characterized fungal communities in dry and moist tundra and investigated the effect of long-term experimental summer warming on three aspects of functional groups of arctic fungi: richness, community composition and species abundance. Warming had profound effects on community composition, abundance, and, to a lesser extent, on richness of fungal functional groups. In addition, our data show...
متن کاملEffects of Nitrogen Fertilization on Plant Communities of Nonsorted Circles in Moist Nonacidic Tundra, Northern Alaska
Nitrogen availability is considered to be a key limiting factor for plant growth in arctic tundra. Freeze-thaw cycles, which can produce patterned-ground features, may also limit the establishment and growth of arctic plants. In this experiment, we fertilized nonsorted circles, a type of patterned-ground feature, and the surrounding more stable vegetation in moist nonacidic tundra of northern A...
متن کامل